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The National Aeronautics and Space Administration (NASA) Armstrong Flight Research 

Center (Edwards, California) completed a series of research flights to better understand the 

challenges of aircraft wake surfing using civilian airplanes and commercial avionics. The 

research flights sought to demonstrate significant fuel savings by a pair of business jets 

engaged in automated wake surfing using commercial off-the-shelf avionics to the fullest 

extent possible, including a 1090-MHz Automatic Dependent Surveillance – Broadcast 

(ADS-B) data link. A NASA Gulfstream C-20A airplane (Gulfstream Aerospace, Savannah, 

Georgia) was flown as the trail airplane within the wake of a NASA Gulfstream III (G-III) 

airplane. This paper presents a summary of the fuel savings measured during those flights. 

I. Nomenclature 

ADS-B = Automatic Dependent Surveillance – Broadcast 

AOA = angle of attack 

FAA = Federal Aviation Administration 

ILS = instrument landing system 

kcas = knots calibrated airspeed 

𝑚 = fuel quantity, lb 

𝑚̇0 = trim fuel flow, lb per hour 

𝑚̇𝑅 = recorded fuel flow, lb per hour 

PPH = lb per hour 

TP = test point 

Δ𝑉 = off-condition airspeed, kcas 

𝑉̇ = airspeed rate of change, kcas per sec 

II. Introduction 

In 2017, the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (Edwards, 

California) conducted a series of flight experiments to explore the feasibility of automated aircraft wake surfing at 

extended trail distances while using civilian aircraft and commercial avionics, including a 1090-MHz Automatic 

Dependent Surveillance – Broadcast (ADS-B) data link. The tests were performed at a trail distance of 4,000 ft, or 

approximately 50 wingspans. The time-in-trail at this distance was just under six seconds. Wake surfing is a method 

for extracting energy from the trailing wingtip vortices of another airplane (Ref. [1]). The energy is extracted by 

placing the wingtip of the trail airplane in the upwash portion of the vortex. The vortex upwash reduces the induced 

drag (drag due to lift) of the wing. 

Beukenberg and Hummel (Refs. [2, 3]) were the first to experimentally demonstrate fuel savings through wake 

surfing. Their experiments used straight-wing, propeller-driven aircraft in close formation flight – fewer than three 

wingspans of longitudinal separation measured from wingtip to wingtip. NASA expanded on these results with fighter 

aircraft, also in close formation flight (Ref. [4]), as did the United States Air Force (USAF) (Ref. [5]). NASA also 

investigated the wake surfing benefits of a small fighter airplane behind a large transport (Ref. [6]). In partnership 
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with the USAF, the Air Force Research Laboratory (AFRL), and the Defense Advanced Research Projects Agency, 

NASA demonstrated wake surfing benefits for large military transport aircraft in an extended formation configuration 

(Ref. [7]). Extended formations are those in which the aircraft are separated in the streamwise direction by more than 

10 wingspans (Ref. [8]). The Boeing Company (Chicago, Illinois) and AFRL further investigated wake surfing for 

large military transports at extended trail distances (Ref. [9]). 

For pairs of similar aircraft, these wake surfing flight experiments have shown fuel savings of 9% to 14% for close 

formation flight and 7% to 10% for extended formations. In all of these experiments, the trail aircraft was either under 

the control of the pilot by way of visual cues to the lead airplane, controlled by an autopilot with the aid of a specialized 

data link for transmitting position and velocity information from the lead airplane to the trail airplane, or, in some 

cases, controlled by a pilot using cockpit displays connected to a specialized data link. 

This paper presents performance benefits for a business jet surfing the wake of a similar airplane at extended 

in-trail distances using two-axis automatic control and a commercial ADS-B data link for wake-relative navigation. 

Section III presents a description of the flight experiment, including the test aircraft, research instrumentation, test 

methodology, and a summary of the completed test points. Section IV introduces the methodology used to estimate 

fuel flow savings from experiment measurements. Section V presents the flight experiment results. 

III. Flight Experiment Description 

In 2017, NASA flew a series of four research flights with a Gulfstream C-20A airplane performing wake surfing 

behind a Gulfstream G-III airplane. The trail airplane was equipped with an experimental programmable autopilot that 

controlled lateral and vertical position relative to an estimate of the location of the wake of the lead airplane. 

Along-track position (distance in trail) to the lead airplane was manually controlled by pilot throttle inputs. Tablet 

computers mounted on the pilot’s and co-pilot’s yoke displayed throttle command cues, along-track command, range 

and error, as well as the predicted wake location. See Reynolds (Ref. [10]) for a detailed description of the pilot 

displays used for this flight experiment. 

A. Aircraft Descriptions 

The two aircraft used for the wake surfing experiment are shown in Fig. 1. The C-20A airplane is a military variant 

of the G-III airplane. The main differences between the lead airplane and the trail airplane are avionics modifications 

and external configuration. The G-III lead airplane interior and exterior were typical business jet configuration. 

 

Fig. 1. NASA C-20A (white/blue) and G-III (all white) aircraft in close formation flight. 
 

The trail airplane has been modified to carry an experimental sensor pod on the centerline below the wing. While 

the pod was removed for the wake surfing research flights, the pylon mount remained installed and increased fuel 

consumption when compared to the lead airplane at similar flight conditions and gross weights. The interior cabin of 
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the C-20A airplane was in an experimental configuration, with multiple equipment racks located on both the left and 

right sides of the cabin. 

B. Experiment Systems 
The C-20A production avionics did not include an ADS-B In receiver or the necessary wake surfing navigation 

and control algorithms, so an experimental programmable autopilot was installed in the cabin of the trail airplane. The 

programmable autopilot served the function of a prototype flight director computer (FDC) modified for wake surfing, 

without requiring hardware and software modifications to the existing FAA-certified FDC. 

The programmable autopilot used a commercially-available 1090-MHz ADS-B In receiver as a one-way data link 

from the lead airplane. Messages received from all nearby aircraft were filtered by International Civil Aviation 

Organization identifier to retain only those received from the lead aircraft. The position and velocity information in 

those messages, transmitted twice per second, was combined with similar information from the trail airplane to 

compute a relative navigation solution between the two airplanes. The ADS-B message structure uses a complex 

encoding scheme to achieve a resolution of 5.1 meters (at the equator) for latitude and longitude despite allocating 

only 17 bits to each parameter. Barometric pressure altitude is encoded with a resolution of 25 ft. The accuracy of the 

information contained within the ADS-B messages is dependent upon the quality of the navigational systems of the 

transmitting aircraft. 

The horizontal location of the part of the wake nearest to the trail airplane was calculated from the reported location 

of the lead airplane, the time in trail, and wind estimates from the navigation system of the trail airplane. The altitude 

of the nearest portion of the wake is similarly found by adjusting the reported altitude of the lead airplane for the 

wake’s assumed descent rate (Ref. [11]) and the time in trail. Figure 2 shows an example prediction of the wake 

location for a 10-kn crosswind and 4,000 ft in trail at 400 kn. 

 

Fig. 2. Vortex upwash map with wake prediction and flight test points. 

 

Three-axis control commands were calculated to maintain a parallel trajectory at a specified radial distance from 

the wake and trailing distance from the lead airplane. Cross-track and vertical-track commands were sent to the 

production autopilot of the trail airplane as direct current analog ILS localizer and glideslope commands, while throttle 

cues were given to the pilot to maintain along-track distance from the lead airplane. 

C. Test Instrumentation 
Avionics bus data were collected for the trail aircraft during the test flights, including altitude, airspeed, winds, 

position and velocity, control surface positions, pitch and roll rate, and Euler angles. Airspeed, winds, position and 

velocity, and roll angle were also recorded from the avionics bus of the lead airplane. Both aircraft were equipped 

with independent global positioning system (GPS) receivers for making post-flight, high-precision calculations of 

relative position and velocity. Control position transducers were installed and calibrated to measure the deflections  

of both ailerons, both spoilers, the rudder, elevator, and horizontal stabilizer on the trail airplane. 

Digital fuel flow was not available for on-board recording without breaking into the production aircraft systems, 

so a small, portable video camera with internal recording was installed on the cockpit console with a view of the left 

and right engine fuel flow gauges. Just prior to takeoff, the internal clock on the camera was synchronized with a GPS 

time source. Recording start and stop times were also noted for post-flight correlation of the video to other on-board 

data sources. The camera was set to record 30 frames per second at a resolution of 1280 x 720. The fuel flow gauges 

are analog and digital readouts, with a digital resolution of 10 lb per hour (PPH). Figure 3 shows a still shot from the 
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recorded video. A character recognition software tool proved unreliable at translating the video-captured readings, so 

fuel flow readings for both engines at each second were transcribed from the video by hand. 

 

Fig. 3. Cockpit video camera view of fuel flow gauges. 
 

At various times during each test point, pilot call-outs of fuel quantities from both airplanes were recorded by 

hand. The pilots’ fuel quantity readings have a resolution of 100 lb. 

D. Test Methodology 
All wake surfing test points were flown at a Mach number of 0.7 and an altitude of 35,000 ft in the United States 

Navy W-291 test range over the Pacific Ocean off the coast of Southern California. This flight condition was chosen 

as approaching cruise conditions while still providing sufficient structural margin on winglet and tail loads in the event 

of an inadvertent wake crossing. Three-axis steering cues were provided to the trail airplane test pilot to maneuver 

into the desired position relative to the wake of the lead airplane prior to engaging the research system. The research 

autopilot was engaged approximately 4000 ft aft of the lead airplane and outside of the predicted region of wake 

effects. The in-trail distance of 4000 ft was chosen for all of the wake surfing tests because it equates to approximately 

50 wingspans, which is at the larger end of the presumed usable range of extended formation flight wake surfing (Ref. 

[8]). 

Following engagement, the pilot of the trail airplane maintained the desired along-track spacing to the lead airplane 

through manual throttle adjustments, based on position cues from the research system displayed on a tablet computer 

mounted to the control yoke. The research autopilot maintained the desired cross-track and vertical position based on 

own-ship data and ADS-B information transmitted from the lead airplane. The experiment test conductor entered new 

position commands to the research autopilot by way of a laptop computer. As shown in Fig. 2, wake surfing flight test 

points generally followed the process of: 

1) an initial tare point, 

2) systematic wake ingress, 

3) stabilized wake surfing for performance and ride quality characterization, and 

4) a post-test tare point. 

 

The locations depicted in Fig. 2 represent the centerline locations of the aircraft and wake, not the wingtip or vortex 

core. During tare points, the team gathered a minimum of three minutes of data while stabilized outside the wake area 

of influence. Wake ingress was initiated when the test conductor commanded the trail airplane to a position within the 

wake effects and allowed the dynamics to stabilize. New position commands were subsequently chosen to 

incrementally move deeper into the wake. Once the experimental autopilot’s steady-state roll trim surpassed a 

pre-specified criteria, or a significant change in ride quality was reported by the researchers in the cabin of the trail 

airplane, the current position command was maintained while wake surfing performance and ride quality 
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measurements were collected. Wake surfing dwell times were a minimum of five minutes. Following the wake surfing 

points, the trail airplane was commanded out of the wake so that a post-test tare point could be completed. 

E. Summary of Completed Test Points 

The first three wake surfing flights were focused on developing test techniques, adjusting gains to improve stability 

and system tracking performance in wake effects, refining the pilot throttle cue display, and gathering measurements 

to characterize the wake field based on the trim state of the trail airplane at different locations within the wake. The 

purpose of the final flight was to gather wake surfing performance and ride quality data. In all, the project completed 

17 tare points, 30 wake ingress sequences, and 10 stabilized wake surfing points. 

This paper presents an evaluation of the fuel flow measurements taken during the seven wake surfing test points 

on the final flight and the associated tare points. See Reference [12] for an analysis of the effects of wake surfing on 

passenger discomfort during this experiment. 

IV. Analysis Methodology 

The primary wake surfing performance measure of interest is change in trimmed fuel flow. Fuel flow varies with 

fuel quantity 𝑚 in addition to the trim state of the airplane. The trimmed fuel flow 𝑚̇0(𝑚) was estimated post-flight 

by correcting the flight-recorded fuel flow 𝑚̇𝑅(𝑚) for the effects of off-condition airspeed Δ𝑉 and non-zero airspeed 

rate 𝑉̇, as shown in Eq. (1). 

 

 𝑚̂̇0(𝑚) = 𝑚̇𝑅(𝑚) − (
𝜕𝑚̇

𝜕𝑉
)Δ𝑉 − (

𝜕𝑚̇

𝜕𝑉̇
) 𝑉̇ (1) 

 
The partial derivatives in Eq. (1) were estimated for the trail airplane from flight data over periods of constant 

throttle setting during tare test points. The pilot of the trail airplane attempted to maintain along-track spacing to the 

lead airplane with as few throttle adjustments as possible. Along-track error between the airplanes was allowed to vary 

within a range of ±250 ft because the wake effects on the trail airplane change slowly in that dimension. The large 

tolerance on along-track error frequently allowed for periods of constant throttle settings of 60 seconds or more. 

A. Off-Trim Airspeed Correction 

During all test points, the pilot of the lead airplane flew with altitude-hold and Mach-hold autopilot modes engaged. 

Variations in the lead airplane autopilot’s performance and in changing atmospheric conditions produced small 

deviations from the desired airspeed condition for the test. The off-condition (off-trim) airspeed of the trail airplane 

at multiple analysis points during each test point is shown in Fig. 4. 

 

Fig. 4. Off-trim airspeed during tare test points. 
 

A value of 16.5 PPH per knot of airspeed variation is given for 𝜕𝑚̇
𝜕𝑉

 in Eq. (1) by the C-20A flight manual  

(Ref. [13]) for a mid-fuel condition. An estimate of 𝜕𝑚̇
𝜕𝑉

 was also derived from flight data as 13.4±4.2 PPH per kn. 

Using the flight manual value, fuel flow readings taken from the video were corrected to a common reference airspeed 

of 235 kcas, corresponding to the intended test flight condition. The fuel flow values shown in the remainder of this 

paper have been corrected for airspeed. 
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B. Airspeed Rate Correction, Tare Points 

The test technique emphasis on minimizing throttle changes resulted in the trail airplane either gradually 

accelerating or decelerating during most of the test points. The zero-acceleration fuel flow correction for each tare 

point was estimated from multiple time segments of constant fuel flow and constant airspeed rate 𝑉̇. An example of 

fuel flow measurements plotted against 𝑉̇ for these time segments is shown in Fig. 5. 

 

Fig. 5. Example plot for determining tare point trim fuel flow. 

 

Assuming a linear variation of fuel flow with airspeed rate, the value of 𝜕𝑚̇
𝜕𝑉̇

 in Eq. (1) is the slope of the linear fit. 

Trim fuel flow estimates were calculated for each of the 11 tare test points on the final test flight. These are plotted 

versus total fuel quantity of the trail airplane in Fig. 6. A quadratic curve was fit to the estimates to allow for a 

comparison of fuel flow in and out of wake effects at any point during wake surfing tests. Uncertainty bounds for each 

fuel flow estimate are derived from the standard deviation of the linear fit, the standard deviation of the variations in 

raw fuel flow readings taken from the video, and the resolution of the fuel flow gauges. 

 

Fig. 6. Estimated fuel flow versus fuel quantity curve, tare test points. 

 

C. Airspeed Rate Correction, Wake Surfing 

Due to the dynamic nature of flight in vortex effects, measurements taken during wake ingress and wake surfing 

test points contained very few time segments of constant airspeed rate, even at constant throttle settings. Small position 

changes within the wake field affect the trim state of the airplane, leading to non-constant 𝑉̇. Therefore, it would be 

useful to extrapolate the values of 𝜕𝑚̇
𝜕𝑉̇

 found during the tare point analysis to fuel flow measurements recorded during 

the wake ingress and wake surfing test points. 

In order to apply the tare point 𝜕𝑚̇
𝜕𝑉̇

 values to flight in the wake, it was first necessary to determine whether fuel 

quantity must be taken into account. All of the tare point time segments of constant fuel flow and constant airspeed 

rate used to calculate values for 𝜕𝑚̇
𝜕𝑉̇

 are plotted in Fig. 7, with the off-trim fuel flow calculated by subtracting the 

quadratic tare estimates from the fuel flow measurements. All of the tare points show good agreement, indicating that 

the airspeed rate correction does not vary with fuel quantity. 
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Fig. 7. Off-trim fuel flow versus airspeed rate, tare test points. 

 

Next, a determination was made as to whether wake effects alter the value of 𝜕𝑚̇
𝜕𝑉̇

. Several time segments were 

identified with constant fuel flow and constant airspeed rate while in wake effects. Figure 8 shows an example of a 

wake surfing test point during which two fuel flow estimates were made using values of 𝜕𝑚̇
𝜕𝑉̇

 found from a linear fit of 

in-wake steady-state time segments. Fuel flow estimates for these segments were also calculated using the tare point 

value of 𝜕𝑚̇
𝜕𝑉̇

 found from the slope of the linear fit in Fig. 7. The two approaches show good agreement, indicating that 

wake effects do not significantly change the value of the airspeed rate correction, and that the tare point value from 

Fig. 7 can be applied to wake ingress and wake surfing test data. 

 

Fig. 8. Comparison of in-wake and tare-point -derived fuel flow corrections. 

 

V. Wake Surfing Performance 

Using the methods described above, comparisons between the corrected fuel flow measurements for the trail 

airplane during tare points and while immersed in wake effects provide a measure of the benefits wake surfing. The 
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wake benefit predictions are then correlated with changes in trim pitch angle and roll trim changes due to the influence 

of the wake. 

A. Fuel Flow Reduction 
The percent reduction in fuel flow as compared to the tare curve was calculated for those portions of the wake 

ingress and wake surfing maneuvers having constant throttle settings. The mean corrected fuel flow for all of the 

constant-throttle time segments during the seven test points on the final research flight are shown in Fig. 9. For Test 

Point 2 and Test Point 7, fuel flow estimates were also calculated at 1 Hz for the constant-throttle time segments while 

in wake effects, and these estimates are also included in Fig. 9. 

 

Fig. 9. Fuel flow reduction during wake ingress and wake surfing. 

 

The wake ingress measurements were collected during the step-wise commanded approach from the tare point into 

the region of wake effects, and represent the steady-state fuel flow at different points within the wake. In contrast, the 

wake surfing measurements were taken with a constant position command to the automatic controller. However, due 

to the slow trim response of the controller combined with the increasingly steep trim disturbance gradient of the wake 

as the wingtip of the trail airplane approaches the vortex core, the wake surfing measurements were also collected at 

multiple locations within the wake field because the trail airplane did not consistently maintain zero tracking error. 

These tracking errors resulted in the wide range of fuel flow benefits measured during the wake surfing maneuvers 

shown in Fig. 9. 

Positive fuel flow reduction in excess of two percent occurred during each of the seven wake surfing test points 

attempted on the final flight, although the maximum measured benefit was different in each case. The flight test 

procedure called for iteratively re-positioning the trail airplane deeper into the wake effects during the wake ingress 

maneuver until wake turbulence was felt by the cabin crew. As discussed in Ref. [12], the onset of wake-induced cabin 

vibration consistently occurred near 3.5-percent fuel flow reduction. As seen in Fig. 9, most of the test points stopped 

near this ride quality threshold. 

Two of the test points failed to record a fuel flow improvement beyond the 3.5-percent ride quality threshold.  

Test Point 3 ended prematurely with a wake crossing event. During Test Point 4, the cockpit fuel flow camera battery 

died, so the performance benefits for the wake surfing portion of that test point could not be calculated. The two test 

points that went significantly beyond the ride quality threshold were Test Point 2 and Test Point 7. Both of these tests 

demonstrated performance benefits that varied between three-and-a-half percent and eight percent fuel flow reduction, 
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with excursions as high as 10 percent. The intent of the flight experiment was to demonstrate moderate performance 

benefits with civilian aircraft using ADS-B for relative navigation, not to identify the maximum achievable benefit. 

Therefore, these results do not necessarily represent the maximum achievable benefit. 

B. Correlation with Wake-Relative Location 
Fuel flow reduction as a function of wake-relative cross-track and vertical-track position for Test Point 2 and Test 

Point 7 are shown in Fig. 10, along with theoretical predictions. Theoretical predictions of wake surfing performance 

benefits were calculated using a Burnham-Hallock vortex model (Ref. [14]) with a core size of one percent of the 

wingspan, and aerodynamic strip theory. The predictions for the two test points are slightly different due to the 

decreasing strength of the wake vortices as the lead airplane burned fuel and became lighter. 

 

Fig. 10. Theoretical and flight-measured fuel flow reduction maps. 

 

An independent measurement of the position of the wake during the flight test was unavailable, and the accuracy 

of the position estimates in Fig. 10 are unknown. The wake-relative cross-track distance accuracy depends on the 

accuracy of the reported positions of the two aircraft, as well as the wind speed and direction reported by the trail 

airplane. At a time-in-trail of nearly six seconds between the two airplanes, even a one-knot error in the cross-track 

wind component equates to a 10-ft position error. Wind estimate error dynamics also tend to obscure performance 

trends. 

The accuracy of the wake-relative vertical-track distance depends on the accuracy of the reported positions of the 

airplanes and an assumption about the weight of the lead airplane. Real-time updates of the fuel quantity of the lead 

airplane were not available during the flight, so a mid-fuel weight was assumed. At the test time-in-trail, the difference 

in predicted wake descent distance between the heaviest (first) and lightest (last) test points was 5.2 ft. The vertical 

positions in Fig. 10 were corrected post-flight for lead aircraft weight. 

The horizontal trends of the performance map in Fig. 10 match pre-flight predictions in that the largest benefit was 

measured nearest to the vortex cores. The magnitude of the measured benefit does not align well with the pre-flight 

predictions, likely due to errors in wind drift calculation inputs. The gradient of the flight measurements appears to be 

steeper than the predictions, indicating that the wake vortices may be more tightly contained than the 

Burnham-Hallock vortex model (Ref. [14]) predicts. Due to the narrow range of vertical positions in the test data, it 

is impossible to draw useful comparisons between the flight results and the pre-flight predictions for that axis. 

C. Pitch Trim Effects 

The upwash encountered by the wing of the trail airplane during wake surfing increases the local angle of attack 

(AOA). In order to maintain level flight and remain in formation with the lead airplane, the trail airplane must re-trim 

at a lower overall AOA. Measurements of AOA changes on the trail airplane during wake surfing should correlate 

with fuel flow reduction. 

Angle of attack was not directly measurable on the trail airplane for this flight experiment. As an alternative in 

level flight, pitch angle can be used to approximate AOA and was recorded during the testing. Figure 11 shows the 

flight-measured change in pitch angle during Test Point 2 and Test Point 7 along with the change in AOA predicted 
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by theory. Theoretical predictions for wake-induced changes in AOA were calculated using the same method as the 

wake surfing performance predictions above. 

 

Fig. 11. Pitch angle trim effects during wake surfing. 

 

The measured changes in trim pitch angle during wake surfing follow the trend predicted by theory. Test Point 7 

consistently exhibited larger trim changes than Test Point 2, although the theoretical predictions for the different 

weights of the two test points were nearly identical when plotted against fuel flow reduction. In general, both test 

points showed reductions in trim AOA consistent with the measured reductions in fuel flow. 

D. Roll Trim Effects 

Due to the asymmetric nature of the wake vortex upwash field, the trail airplane must apply steady-state roll trim 

to maintain cross-track position within the wake. In the C-20A experiment, the programmable autopilot’s roll 

commands were routed through the production ILS localizer autopilot to the ailerons and spoilers. Figure 12 shows 

the average aileron and spoiler deflections for varying levels of fuel flow reduction during Test Point 2 and Test Point 

7. 

 

Fig. 12. Roll trim during wake surfing. 
 

There is a clear correlation between mean roll-surface deflection and percent fuel flow reduction. This correlation 

is consistent with prior flight research that has shown that increases in upwash velocity at the wingtip during wake 

surfing are accompanied by increased roll trim requirements (Refs. [7, 9]). The maximum of the peak aileron 

deflection curve occurs in the region of 5 percent to 6 percent and is likely due to a combination of trim requirements 

and tracking error correction as the airplane was periodically disturbed from its commanded position within the wake. 

Overall, the wake-induced roll trim measured during the C-20A wake surfing test points were quite small, and 

consistent between test points. The fuel flow penalty associated with the roll trim during these tests was not deduced 

from the test measurements. 
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VI. Conclusion 

Performance measurements were collected for a Gulfstream C-20A airplane (Gulfstream Aerospace, Savannah, 

Georgia) surfing the wake of a similarly-sized Gulfstream III (G-III) airplane. The C-20A trail airplane was equipped 

with a programmable autopilot to predict and control the position of the airplane within the wake. Reductions in fuel 

flow of more than two percent were consistently measured during aircraft wake surfing when compared to fuel flow 

during out-of-wake tare points. Two of the test points demonstrated sustained fuel flow reduction ranging between 

three-and-a-half percent and eight percent, with momentary savings as high as ten percent. Wake surfing performance 

data were collected at the onset of wake-induced vibrations in the cabin of the trail airplane, potentially limiting the 

measured benefits to less than what might have been observed at stronger locations in the wake. These results help 

demonstrate the suitability of civilian aircraft and avionics systems, including Automatic Dependent Surveillance – 

Broadcast (ADS-B), for operational wake surfing applications. 

Additional flight research is required to mature wake surfing for commercial operations. A more comprehensive 

study of the effects of wake surfing on passenger ride quality is critical, as is the development of robust algorithms 

for wake estimation, performance optimization, and to prevent inadvertent wake crossings. New sensor technologies 

may also enable future wake surfing systems. There also remains work to be done on the cooperative routing and 

scheduling of aircraft formations, and on changes to air traffic control operations and aviation regulations. 
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